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Take Aways

• Criticality safety can be 
complicated and non-intuitive

• You cannot stop an accident 
once it has started - best to 
avoid an accident from starting

• Important criticality safety 
parameters: MAGIC MERV

• Mass
• Absorption
• Geometry
• Interaction/Spacing
• Concentration

• Moderation
• Enrichment
• Reflection
• Volume
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Radiological Safety vs Nuclear Criticality Safety

• Thousands of radioactive materials (isotopes)
• most exist in nature; some are artificial
• all pose a hazard to human health

• each one is unstable and emits radiation (α,β,γ,n) at predictable levels
• damages the human body at the cellular level

• Radioactivity cannot be altered by physical properties or the 
environment

• mass, volume, geometry, temperature, pressure, 
• Personnel protection is effective via simple rules

• Time
• Distance
• Shielding

• These controls and principles are not effective for 
criticality safety
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Fission

• A subset of these radioactive materials 
also “fission”

• uranium and plutonium are the most 
common in the NNSA

• Fission is NOT a radioactive decay 
process

• it is caused by particles striking the 
nucleus (ie, a trigger)
• e.g., neutrons

• As such, it can be altered by physical 
and environmental properties
• Mass, volume, geometry, temperature, pressure, 

etc.
• Fission process can be reduced (or intensified!) 

by adjusting trigger
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Chain Reactions

• Because fission releases new 
neutrons (potential triggers)

• it is possible for fission to feed 
itself

• chain reactions can result
• large energy release, in the form of 

radiation, is possible
• life threatening to personnel and 

organisms nearby



Los Alamos National Laboratory

11/13/19   |   7

Types of Chain Reactions

• Subcritical (self-extinguishing 
chain reaction)

• Each fission leads to less than one 
future fission

• Fission chain and neutron population 
dies in time

• Critical (self-sustaining chain 
reaction)

• Each fission leads to exactly one 
future fission

• Fission chain and neutron population 
is constant (“never ends”)

• Supercritical (self-promoting 
chain reaction)

• Each fission leads to more than one 
future fission

• Fission chain and neutron population 
grow in time
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Criticality Accident

• Self-sustaining chain reactions that occur at a time and place of our 
choosing are known as:

Nuclear reactors
Critical assemblies
Nuclear Weapons

• Self-sustaining chain reactions that occur during the handling 
(transport, processing, storage) of fissionable materials are known as

Criticality Accidents
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Chain Reactions

• Self-sustaining chain reactions 
can be started any number of 
ways

• Mixing the fissionable 
materials with 

• Acid, water, plastic, oil, beryllium, 
carbon, foam

• Placing shielding nearby
• Realistically any material 
• Common materials include: gel blocks, 

polyethylene, your body, metal sheets
• Collocating containers or items 

of fissionable material
• Altering the shape of the 

fissionable material unit
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Consequences of Criticality Accidents

• Large energy release in the form of radiation
• Life threatening to personnel and organisms nearby

• Significant effects within ~5 meters (~15 feet)
• You and your teammates!

• Potential for public exposures or offsite workers
• Important Note:  Criticality accidents happen very quickly

• Less than a second, typically milliseconds or microseconds for initial burst
• Majority of dose from initial burst

• No chance to make any changes or stop accident
• Criticality Safety (ie, avoiding criticality accidents) is important!
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What is Criticality Safety?

Protection against the consequences of a criticality accident, preferably 
by prevention of the accident

• Limiting chance for self-sustaining chain reaction
• It is no different than any other safety discipline

• Implemented for Stabilization through technical guidance from the 
Diagnostician or Home Team 

• Underlying principles can be complex and counter to rational judgment
• Adding or removing water from fissionable material may both be unsafe
• Effects of adding non-fissionable material are not always straightforward
• Behavior of material may change depending on its distribution and location
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Who Are Criticality Safety?

• The mission space we exist in 
does not allow for full 
evaluations of every situation

• No procedures
• Expert Guidance

• The Diagnostician and the 
Home Team are able to give 
criticality safety guidance

• The team lead is responsible for 
the safety of the overall 
operation

• You
• You are the one at the IPC
• Your team relies on you to perform 

the correct actions 
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The Fate of Neutrons

• Neutron life 
• Begins at fission
• Continues as the neutron moves through the system
• Ends when it is removed from the system

• How are neutrons removed?
• Leakage – neutrons fly out of the system, never to return
• Absorption – neutrons can collide with an atom and “stick” (maybe causing 

a fission)
• What else can happen to a neutron as it flies through a system?

• Scatter – neutrons can collide with an atom and “bounce” off
• The number of neutrons that are absorbed (and cause a fission) versus 

the number of neutrons that leak out or are absorbed (and do not cause 
a fission) tells us if a chain reaction is possible!
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Fission Process

• Fission can be induced by free neutrons “colliding” with nuclei
• The neutron brings energy to the nucleus, making it unstable

• Two types of energy
• Kinetic (speed) and binding (E=mc2)

• This sometimes results in splitting of the nucleus
• two or more major pieces known as fragments
• some number of additional free neutrons 
• γ-rays
• Lots of energy carried by all these products

• Some isotopes can only fission with collisions with high energy neutrons 
(ie, traveling fast)

• Some isotopes can fission with any energy neutrons
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Neutrons and Chain Reactions

• Anywhere from 0 to 10 neutrons may result from one fission
• average, �̅�𝜐, for 235U is ≈ 2.5
• average, �̅�𝜐, for 239Pu is ≈ 3.0

• Conceptually this makes a chain reaction possible
• Should be easier of 239Pu than for 235U

• Follow the neutrons
• Chain reactions are propagated by neutrons
• You can design your system (reactor, assembly, weapon, process, etc) to 

stop or enhance a chain reaction
• What types of things can happen to a neutron in a system?
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Scattering and Moderation

• Neutron cross sections (ie, what happens when a neutron “collides” 
with an atom) depend upon energy of the neutron

• If the neutron is moving slower (or faster!), the criticality of the system 
can change

• Can we slow neutrons down?  Can we speed neutrons up?
• Yes – neutrons will lose energy when scattering (ie, “bouncing”)

• Cannot really speed neutrons up – but they start off pretty fast to begin 
with!

• Scattering neutrons off of nuclei to slow the neutrons down is called 
Neutron Moderation and is very important in criticality safety

• Are certain nuclei (atoms) better in slowing neutrons down?
• What are the overall effects of neutron moderation on our systems?
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Scattering

• The neutron energy loss per collision 
depends on the mass (A) of the nuclei 
being hit

• Heavy (A > 16) nuclei cannot slow 
neutrons down effectively
• Billiard ball hitting a bowling ball is a good analogy
• Nuclei heavier than oxygen are just not good at 

slowing neutrons

• Light (A ≤ 16) can be somewhat effective
• H, He, Li, Be, B, C, N, O
• The lighter the better
• Hydrogen is best of all at slowing neutrons

•~ Equal mass to a neutron
•Billiard ball hitting another billiard ball is a good 
analogy
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Importance of Moderation

• What is moderation?
• The slowing down of neutrons through scattering

• Why does moderation matter?
• Scattering off light nuclei slows a neutron down

• Slower neutrons are more likely to be absorbed than scatter in fissionable material

• More slow neutrons means more absorption
• More absorption means more fissions
• More fissions means greater likelihood that self-sustaining chain reaction 

will occur
• Less fissionable material is required

• Mixing fissionable material with lighter materials causes moderation
• The degree of moderation is a macro system property like density

• Varies depending on the amount of light material
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Cross Section

~30,000,000 mph~5,000 mph
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Criticality Safety Parameters

• The list of parameters can have 
large effect upon criticality of a 
system

• Some we can easily adjust –
some are harder to adjust

• Adjusting parameters can be 
complicated and non-intuitive!

• MAGIC MERV

• Mass
• Absorption
• Geometry
• Interaction/Spacing
• Concentration

• Moderation
• Enrichment
• Reflection
• Volume
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Criticality Safety Parameters

• Mass - the amount of material that is in the IPC
• Absorption – removal of some absorbing material near IPC
• Geometry – shape of material and IPC
• Interaction/Spacing – distance between multiple IPCs
• Concentration – amount of material in a solution
• Moderation – slowing neutrons down
• Enrichment – amount of the “good stuff”
• Reflection – addition of materials around IPC 
o including you and your buddy

• Volume – size of IPC
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Mass
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Absorption
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Geometry

• Equivalent volumes
o S/C surface area ratio = 0.81
o Sphere has 19% less surface 

area for the same enclosed 
material

o Cube leakage is higher
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Interaction/Spacing
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Interaction/Spacing
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Concentration
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Moderation
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Enrichment

5% U-235 90% U-235
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Reflection
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Volume
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Combining All Parameters

• For any fissionable material accumulation 
• the particular value of each parameter will act to either make a self-

sustaining chain reaction
• Easier

• Enhances absorption of neutrons in fissionable material
• Reduces leakage from the system

• More difficult
• Reduces absorption of neutrons in fissionable material
• Increases leakage from the system

As fissionable material is handled the parameters change
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Critical Mass Comparison

• The critical mass of a 
• water reflected system is about ½ that of a bare system
• moderated systems require less fissionable material

• ~10 times less for optimally moderated systems 
• 21 of the 22 process accidents have occurred with solution

• Why?

Material

Metal System Mass (kg) Solution System Mass (g)

Bare Water 
Reflected Bare Water 

Reflected
α-Pu(5) 10.2 5.8

1200 600
δ-Pu(5) 15.6 8.0
α-U(93) 50.0 25.0 1600 800
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239Pu(5) Metal-Water Critical Mass Curves
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Parameters and Chain Reactions
• Consider three different metal systems

• Bare (no reflector)
• U(100) metal 
• Spherical geometry

• Subcritical, Critical, or Supercritical?

• As mass is added the systems gets larger
• More fission sites available
• Leakage decreases (surface to volume ratio decreases)
• Absorption  increases
• Fission increases
• Eventually, chain reactions become self-sustaining (critical) and then self-

promoting (supercritical)
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The Effects of the Parameters

• What would happen to that bare metal critical system if
• An identical sphere was placed next to and in contact with the first sphere?
• The shape was changed to a long skinny rod?
• It was surrounded by

• A pair of hands?, Water?, Beryllium?, A Gel Block?, Foam?, High Explosive?

• It was placed on the ground?
• The density was dropped by a factor of two?
• The enrichment was dropped to 50%
• The metal was dispersed (mixed) in water?

• To understand how this would affect the system, we must understand something about nuclei
• This is not straightforward or common sense

• A Cf-252 source was placed a foot from the sphere?
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In Metals, Ceramics, Oxides

• Neutrons are born and die fast
• Neutrons do not slow down
• Fission is inefficient

• Large mass is needed to sustain 
the chain reaction

• Critical mass are in the 10’s of 
kilograms

• Higher density means more 
efficient fission

• Less material is required
• α-phase 239Pu metal = 10.2 kg 

critical mass
• Lower density means less 

efficient fission
• More material is required
• δ-phase 239Pu metal = 15.6 kg 

critical mass
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In Solutions, Plastics, Oils

• Neutrons are born fast 
• Die fast or slow down by 

scattering off light nuclei
• Slow neutron fission is 

material efficient
• Small masses required to 

sustain a chain reaction
• Critical masses on the order of 

hundreds of grams

• Examples include
• Fissionable material solutions

• Uranyl nitrate, uranyl fluoride, 
Pu nitrate, Pu chloride, etc.

• Fissionable material mixed 
with

• Plastic, oil, water, Be, C
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Nuclear Reactor Kinetics (Words you may hear us say)

• Terminology/Definitions
• k-effective
• Neutron multiplication
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K-Effective – Effective Multiplication Factor

• keff is the multiplication factor
• keff is a measure of the number of fission neutrons in one generation 

compared to the previous generation

• Three possible values for keff:
• keff<1, system is subcritical, neutron population drops from generation to 

generation
• keff=1, system is critical, neutron population is constant
• keff>1, system is supercritical, neutron population grows with each 

generation

keff =
Fission Neutrons in eneration

Fission Neutrons in Preceeding eneration
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Neutron Multiplication

• Neutron Multiplication (M) is not the same as the multiplication factor 
(keff)!

• Neutron Multiplication is the total number of neutrons that would be 
generated through fission from a single starter neutron
• How is the original starter neutron “amplified” through the fission process?

• Neutron Multiplication is only meaningful for subcritical reactors (ie,  
keff < 1)
• 1 ≤ M < ∞
• If the system is critical or supercritical, the number of neutrons generated 

for a single starter neutron will be infinity, so M has no meaning in that 
case

• Simple formula relates Multiplication to multiplication factor:

M =
1

1 − keff
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What Can You Do?

• Take criticality safety training
• Consider Criticality Safety before taking action
• Have a questioning attitude
• Participate in operational planning

• There is always a way to accomplish our goals
• May just not be the first idea

• Ask questions of the science staff
• We are here for your benefit
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What Can You Do As a Team Lead?

• Ensure data reaches Diagnostician and Home Team quickly
• Consider criticality safety when creating operational plan to make 

execution of the safe job easy
• Important instructions must be repeated
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Take Aways

• Criticality safety can be 
complicated and non-intuitive

• Cannot stop an accident once it 
has started - best to avoid an 
accident from starting

• Follow the rules and your 
procedures (see above - any 
issues with procedures (etc), 
please bring them up!)

• Important criticality safety 
parameters: MAGIC MERV

• Mass
• Absorption
• Geometry
• Interaction/Spacing
• Concentration

• Moderation
• Enrichment
• Reflection
• Volume



Los Alamos National Laboratory

11/13/19   |   45

Questions?
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Extra Slides
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Micro and Macro Properties

• What any one neutron will do is not knowable
• The average neutron behavior is very predictable 

• identical conditions=identical results
• e.g., a 6 kg, α-phase, 239Pu sphere, thick water reflected, is always supercritical

• depends on both
• macro-properties (properties of a given system or IPC)

• size (volume, mass), shape (geometry), density, enrichment, etc. 
• micro-properties of individual nuclei (properties of every single atom)

• what things can happen
• the size of the nucleus (cross section)

• shorthand way of saying this is everything

• Micro and macro properties combine such that the overall system 
behavior is very predictable
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Possible Fates 
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Nuclear Microscopic Cross Section

• When a neutron is near a nucleus whether it interacts or not is 
affected by the size of the nucleus

• Known as the microscopic cross section
• Size of one nucleus
• Units of area, cm2 or barns (1 barn = 10-24 cm2)

• Physically the nucleus is small compared to the atom

• Matter is mostly empty space, punctuated by regions of incredible density

• If this view of nature was true on the nuclear scale
• Neutrons would rarely interact
• Fission chains would not be possible

• In subatomic reality
• The size of the nucleus appears to grow or shrink, varying in a complex 

manner with how fast (energy) the neutron is moving
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Microscopic Cross Section Notables

• Any one neutron as it approaches a nucleus will have only a single 
speed (energy)
• The nuclear cross section will have a one set value

• The microscopic total cross section is larger (~100 times or more) for 
slow as opposed to fast moving neutrons
• Fission neutrons are all born moving fast

• The total microscopic cross section can be divided into two parts
• Absorption
• Scattering
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Fissile versus Fissionable
• Fissile

• Nuclei that fission regardless of how fast a neutron is moving
• 235U, 239Pu, 233U, 241Pu, 242Am are fissile

• Fissionable
• Nuclei that fission only if the neutron is traveling above a particular speed 

(threshold)
• 238U, 238Pu, 240Pu, 242Pu, 237Np are fissionable

• Whether a self-sustaining chain reaction is possible is not part of either 
definition, but
• All fissile material can self-sustain a chain reaction
• Most, but not all fissionable materials, also can

• 238U is fissionable but cannot, by itself, sustain a chain reaction

• For nuclear criticality safety purpose 
• “Fissionable” is used generically to refer to SNM that that contribute to criticality safety 

concerns
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Regions of Criticality

• β and the Delayed Critical Window
o β is the delayed neutron fraction (β < 1%)
o Delayed Critical Window is where delayed neutrons are required to 

maintain a critical (or slightly supercritical) system
• 1.0 ≤ keff < 1.0+ β

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
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Delayed Critical versus Prompt Critical

• Delayed Critical: Reactor needs both prompt and delayed neutrons to 
be critical
• increase in neutron population (power) dominated by time for delayed 

neutrons to appear
• long time for power increase allows for control mechanisms

• Prompt Critical:  Reactor only needs prompt neutrons to be critical
• increase in neutron population (power) dominated by time for prompt 

neutrons to appear
• short time for power increase does not allow for control mechanisms

• Criticality accidents are always in this prompt region
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Neutron Multiplication

keff M
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Moderation in Detail

• As light nuclei are  added to fissionable material, three effects occur 
simultaneously

1. fissionable material is diluted, its density is lowered
• fission rate decreases

2. neutrons slow down
• fission rate increases

3. light nuclei absorb neutrons competing with fissionable material
• fission rate decrease

• One affect will dominate the system depending on how much 
moderator is present and the cross section of the nuclei

• Result is a critical mass curve
• Critical mass is a function of the fissionable material density in the 

moderator
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